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Some effects of surface tension on steep water waves 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 19 April 1978 and in revised form 2 November 1978) 

Surface tension provides a restoring force which cannot reasonably be ignored for 
water waves of short crest-to-crest length. Even for large wavelengths its presence 
precludes any sharp corner developing on the free surface. In  this paper we begin 
an investigation of the effects of surface tension on steep water waves. The work of 
Longuet-Higgins (1975) is generalized to show how the integral properties of the wave 
train are affected. In  particular it is shown that for pure capillary waves in deep water 
the mean fluxes of energy, mass and momentum are given by 3Tc, 2Tlc and 4T - V 
respectively, where c is the phase velocity, T the kinetic energy and V the potential 
energy. 

Also the exact solution for the wave profile of deep-water pure capillary waves 
(Crapper 1957) is used to obtain wave profiles, all with the same mean level. This 
yields the unexpected result that the height of the wave crest above the mean level 
is not a monotonic function of wave steepness. 

With subsequent papers this work will form one limiting case of the general prob- 
lem of deep-water gravity-capillary waves. 

1. Introduction 
In  this paper we begin an investigation of the effect of surface tension (capillarity) 

on steep periodic surface waves on water which is assumed to be inviscid, incompres- 
sible and irrotational. Previous work on steep gravity waves has been summarized in 
a paper by Longuet -Higgins ( 197 7) .  

The inclusion of surface tension in the study of water waves has a long history. 
The first to consider gravity-capillary waves of finite amplitude was Harrison (1909). 
He quoted results of a third-order approximation scheme but did not analyse them 
in any great detail. Perhaps unaware of this work, Wilton (1915) carried out the 
expansion to fifth order and sketched profiles of short waves (less than 2 cm long). 
However, the most interesting part of Wilton’s work arose because he noticed (as 
did Harrison) that, at certain known wavelengths, the perturbation expansion had 
a radius of convergence equal to zero. He reconsidered the problem, with a new expan- 
sion, and discovered that two waves could exist a t  the shortest of these wavelengths; 
he again gave sketches of their profiles. It was later found that this phenomenon 
results from the primary wave undergoing a resonant interaction with one of its 
harmonics. In  1920, Kamesvara Rav continued the analysis by including finite depth 
and considering circular waves which emanate from a point source (whereas previous 
work had been confined to plane, progressive waves); again, the expansions were 
found to fail a t  certain wavelengths for a given depth. 
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The question of the existence of plane progressive gravity-capillary waves was 
first considered by Sekerzh-Zenkovich ( 1956). Using the methods which Levi-Civita 
(1 925) had adopted for pure gravity waves, he produced a proof for small amplitude 
waves. Beckert (1963) has also considered the same problem. We mention in passing 
the work of Slezkin ( 1  935), who considered waves with surface tension providing the 
only restoring force. He gave a proof of their existence for sufficiently small wave 
steepness but missed an exact solution to the problem of finite amplitude waves, 
discovered in 1957 by Crapper. Pure capillary waves on water of finite depth have been 
investigated by Kinnersley (1976). 

The rest of the work in this field has tended to concentrate on the failure of the 
perturbation expansion a t  certain wavelengths, as discovered by Wilton. Pierson & 
Fife (1961) tackled these singular cases by expanding about the relevant wavenumber 
and matching this solution to the solution they obtained by classical methods. 
Barakat & Houston (1 968) continued with this approach in the case of water of finite 
depth and found that for very small depths the expansion could be regular. McGoldrick 
(1970) viewed the breakdown as a special case of interaction of two gravity-capillary 
waves with the correct initial conditions of propagation; Wilton had already shown 
that two waves could interact to give these ripples. Indeed the fact that the linear 
phase speed has a minimum does tend to confirm this conclusion, but McGoldrick 
showed how important the initial conditions are. Nayfeh (1970a, b, 1971, 1973) re- 
peated Barakat & Houston’s work but retained time in the analysis, instead of 
viewing the problem from a frame of reference moving with the waves. He concluded, 
by concentrating on different wavelengths, that the wavenumber expansion of Pierson 
& Fife was not uniformly valid. Also Lekoudis, Nayfeh & Saric (1977) analysed one 
of these singular wavelengths and included viscosity in their work, in an attempt to 
match theory and observation. 

In $ 2  of this paper, we prove some general relationships between various integral 
properties of gravity-capillary waves of arbitrary wavelength on water of finite 
depth and also quote the results for infinite depth. I n  $3, Crapper’s solution for the 
wave profile of pure capillary waves of finite amplitude is used to derive exact expres- 
sions for the kinetic and potential energies, together with the radiation stresses and 
energy flux, of these waves. Subsequent papers will present results both for the general 
case of gravity-capillary waves on water of infinite depth and for the particular case 
of the breakdown of the perturbation expansion a t  certain wavelengths. 

2. The integral properties 
This section introduces the notation and the co-ordinate system to be used through- 

out this work. We obtain some exact relationships for periodic gravity-capillary waves 
of finite amplitude on water of uniform depth. The methods are similar to those applied 
to pure gravity waves by Longuet-Higgins (1975). We also derive the results for the 
case of infinite depth. 

Co-ordinate axes and definitions 

Choose rectangular co-ordinates (x, y)  with the x axis horizontal and the y axis vertic- 
ally upwards. Let the equations of the free surface and of the bottom be y = 7 and 
y = - H ,  respectively (f1 constant). The velocity (u, v)  is assumed to be irrotational 
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( =  Vq5) and periodic in x with finite wavelength A. Viscosity is neglected and, as 
Wilton (1915) showed, this imposes restrictions on the range of h to waves greater 
than 1 mm and less than 20 cm in length. Units are chosen such that the density has 
the value one. 

Now choose axes such that the mean elevation ?j, given by 

ATj = so* 7 ax, 

vanishes. We can do this because the wave is periodic. The origin is then fixed in the 
mean surface level and H becomes the mean depth. 

Similarly, by choosing axes which move with the required horizontal velocity, we 
make the mean velocity U, given by 

vanish a t  one level entirely within the fluid and so, since the flow is irrotational, a t  
all such levels. This corresponds to the first definition of the phase velocity c,  as given 
by Stokes (1847). 

The mean wave momentum (or impulse) I, kinetic energy T and potential energy 
V (all per unit horizontal area) are defined by 

I =sq  udy ,  
- H  

T = S q  i(u2 + v2) dy, 
- H  

Here an overbar denotes the average over one period (or wavelength, since the wave 
is progressive), g is the acceleration due to gravity, 7 is the surface tension divided 
by the density and a prime denotes horizontal differentiation. 

The mean flux of momentum per unit span is given by 

where 6 is the angle the wave surface makes with the horizontal and p is the 
pressure. 

The radiation stress per unit span, defined as the excess momentum flux due to the 
waves, is given by 

Ex, = sq ( p + u ~ ) d y + 7 ( 1 - c o s ~ ) - ~ g H 2 .  
- H  

(2.4) 
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Also, if (us, v,) are the components of surface velocity, then the mean energy flux 
per unit span is defined by 

F = / I F I  [P + &(uZ + v2) + gy] u d y  + 7[( 1 + ?p)* - I] us 

T’VS 

+ [ I  - (1  +:y*] us - ( 1  + p)* 
= Fg + F,. (2.5) 

Finally, the mass of fluid per unit horizontal area is given by 

M = S 9  d y = H .  
- H  

Momentum and kinetic energy 

Using methods identical to those of Longuet-Higgins (1975)’ it  is possible to show that 

These are the same as equations (B) and (2.6),  respectively, of that paper. 
Let @ and Y denote the velocity potential and the stream function, respectively, 

of the motion relative to axes moving with the phase speed c. Now x + iy is an analytic 
function of CD + iY so we can use the Cauchy-Riemann relations to obtain 

where the integral in CD,Y space is over an area corresponding to one wavelength, 
from the bottom to the free surface in x,  y space. 

If we let - Q be the mass flux in the steady flow, we have 

-& = J 9  - €I ( u - c ) d y  = [qPH. 

On averaging both sides over one wavelength, this becomes 

The total head R‘ is given by 
Q = c H - I .  

R‘ = p + &[(u - c)’ + v2] + g(y + H ) ,  

and at the free surface this becomes 

R =  - (  7v’’/(l+ P)*) + *qz + 9(q + H ) ,  

where R = R‘ -pa,  p,, being the atmospheric pressure. So 

q = [2R + 277”/( 1 + 7”)s - 2g(7 + H)]*. 

Also d+ = dCD+cdx = - q d s + c d x  = [ -q( l+q’2) t+C]dx ,  

(2.9) 

(2.10) 

(2.11) whence 27q” - 2g(H + q)] *I dx .  
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This is to be compared with equation (E) of Longuet-Higgins (1975), where 7 = 0 
and a slight typographical error are both taken into account. 

We can also obtain another expression for the kinetic energy which in turn enabIes 
us to state an expression for the phase speed c. From (2.8) we have 

( H + q ) d @  = h d Y  = -A& = ~ ( I - C H )  = h(ZT/c-cH) .  

2 h T  

s 
IOA q(H + 7)  (1  + T ’ ~ ) *  dx = - - + c H l o A  dx, 

s 
Hence 

C 

so T = -?- 2h /oA(cH-  ( H  + q )  ( 1  +f2)3 [ 2R+ (1  277” + 7,2)1 -2g(H+7)]d/dx. 

On equating (2.11) and (2.12) and rearranging, we obtain 

3 
- 2g(H + 7)) dx. 

(2.12) 

(2.13) 

Momentum flux and energy flux 
The momentum flux and energy flux can be conveniently expressed in terms of 
known quantities of the fluid by the foIlowing methods. 

Consider Bernoulli’s equation in the form 

[ p  + (U - c ) ~ ]  + (gy - c2) + v2 + ( p  + ~ y )  = 2 B ,  (2.14) 

where B = R’ - gh - 3c2, 

and the equation of vertical momentum in the form 

so that (2 .14)  becomes 

Then by integrating this equation over one wavelength and from the bottom to the 
free surface, in a manner identical to that of Longuet-Higgins (1975), and using (2.4) 
and (2 .6) ,  we obtain 

Note that cos 5 = 1/ (  1 + 7’2)). 

Equation (2.15) can then be rewritten as 

S,, = 4T- -3V , -T+ZBH 

because 

by periodicity, and 

+ 11)  ax. (2.15) 
1 

(1 + ?p)* 

(2.16) 

(2.17) 
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In  (2.17) we use the fact that 

7' 7" 2 [(l +,..,&I = (1 +qy 
To obtain the energy flux let us rearrange (2.14) as 

p + $(u2 + v') + gy = B + cu 

so that, using (2.5), we obtain 

Thus F = BI+c u2dy+FT 
S I H  

from (2.1). 
Equation (2.18) can also be integrated; this gives 

rn 
J ' ( p + g y ) d y + T = B H + c I ,  
- H 

which, on using (2.6)) yields 

(2.18) 

(2.19) 

J " f p + g y ) d y  = T + B H  
- H  

(2.20) 

Also 

= T + B H + /  7 u2dy+7[-] .  f 2  
- H  (1 + p p  

So (2.19) becomes 

S x X + V - T - B H - 7  

which can be written, using (2.16), (2.17) and the condition (us-c)  7' = v,, as 

F = ( ~ T - ~ % ) c + B ( I + c H ) .  (2.21) 

In  the case of pure gravity waves, where 7 = 0, (2.16) and (2.21) reduce to equations 
(3.5) and (3.10) respectively of Longuet-Higgins (1975). 

InJinite depth 

Apart from the shallowest of water depths, short waves essentially propagate in 
water of infinite depth, and this case will now be briefly considered. Of the relations 
derived so far, (2.6) does not explicitly involve the depth and (2.11)-(2.13) will not 
be used directly. Consequently we turn our attention to (2.16) and (2.21). One term 
common to both these equations is B H .  But this vanishes as H -+ 00 by a proof 
similar to that of Longuet-Higgins (1975). Consequently, we rewrite the mass flux 
I ,  momentum flux Sx, and energy flux F in the case of infinite depth as 

I = ~ T / c ,  X,, = 4T-3%--,  (2.22), (2.23) 

F = ( 3 T - 2 % ) ~ .  (2.24) 
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3. Pure capillary waves 
We now deal with the case of pure capillary waves on water of infinite depth, that 

is, when the restoring force is derived from surface tension alone. The definitions in 
the previous section of the mean wave momentum I, kinetic energy T, potential 
energy V ,  radiation stress S,, and energy flux F (from now on omitting ‘per unit 
span’ etc. for brevity) are slightly altered to become 

(3.119 (3.2) 
- -m 

(3.3) v = 7[(1 + f 2 ) * -  11, 

r‘fr‘us - vs) 
--m ( 1  + q ’ 2 ) 1  * 

F = [p++(u2+v2)]udy+7 (3.5) 

We obtain exact expressions for these quantities by making use of the exact solu- 
tion for the surface profile of pure capillary waves (Crapper 1957). All these quantities 
are shown to be monotonic functions of wave steepness, in sharp contrast to the 
behaviour of pure gravity waves (see, for example, Longuet-Higgins 1975; Cokelet 
1977). 

Evaluation of potential and kinetic energies 

The expressions for T and V ,  as given by (3.2) and (3.3), are readily evaluated by 
means of an exact solution for the surface profile of pure capillary waves (Crapper 
1957). However, his results need slight modification owing to differences, in notation 
and in the co-ordinate axes, between his work and this (see figure 1). The equations 
of the surface in the present notation are 

and 

x - ct 
A 

2A sin 2na - -  - 
*(1 +A2+ 2A cos 2na) -a 

2( 1 + A  cos 2na) r _ =  --- 2 
h n(l+A2+2Acos2na) n (3.7) 

where y = is the equation of the surface, a = @/ch varies from 0 to - 1 over one 
wavelength, and a, is such that 7j = 0. The quantity A is a strictly increasing function 
of the crest-to-trough wave height a for a given wavelength, and is related to the 
wave steepness a / h  by 

a / h  = 4A/n(l  - A 2 ) ;  

hence 

Now we know from Crapper’s (1957) analysis that 0 < a /h  < 0.729765, so 

0 < A 6 0.454670 = A,,, 

and it is the quantity A ,  rather than a / h ,  which plays the leading role in this section. 
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Present 

Crapper work ''1 
P 

c>- (great depths) c.- (great depths) 

FIGURE 1 

If  we write 2 for x - c t  then we have, from (3.6) and (3.7), 

1 d6? 
h da 

- (A4- 6A2 + I + 4A2 cos2 2na) -- - - 
(1 + A2 + 2A cos 2na)2 

and 
1 dy - 4A(1-A2)sin2na 
h& - (l+A2+2Acos2na)2' 

(3.9) 

(3.10) 

So, using (3.7) and (3.9), 

A A  2n ( A  + cos e) ( ~ 4  - 6 ~ 2  + 1 + 4 ~ 2  cos2 e) --TIo (1 + ~ 2 +  2~ cOS el3 
dB - a,, - 

where 6 = 2na. Now the integrand is the sum of terms of the form 

cosme/( i  + ~ 2 +  2~ cose)3 (m = 0, 1,2,3) 

and these can be written as the sum of terms of the form cos n6 / (  1 + A2 + 2A cos 0 ) 3  

(n = 0,  1,2,3) by use of well-known trigonometrical identities. 
Hence our basic integral is 

ein8 
d8 = 

(1 + A  ei8)3 (1 + A  e--i0)3 

n( - A)% - - [(n + 2) (n + 1) - 2A2(n2 - 4) + A4(n - 2) (n - l)], 
(1-A2)5 
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where we have used Cauchy's theorem of residues and considered only the pole, of 
order 3, a t  z = -A in the last integrand. The other pole, at  z = - 1/A, lies outside 
IzI = 1 since A is always less than 1; so 

Ah 
n2 

7 = - - {A(  A4 - 4A2 + 1) I, + (A4 - 3A2 + 1) II + 2A312 + A21,} - a, 

-a,. 
4A2h 

n( 1 - A2)2 
- - 

Now we are taking the mean level of each wave to be in the plane y = 0, hence 

a, = 4A2A/n( 1 - A2)2, (3.11) 

From (3.9) and (3.10) we obtain 

- 4A( 1 - A2) sin 2na (Er= 
d b  A4 - 6A2 + 1 + 4A2 COS' 2na'  

Thus 
2 (A4+2A2+ 1-4A2~0~227rcx)~ 

+ (2) = (A4 - 6A2 + 1 + 4A2 c0s2 2 n c ~ ) ~  
(3.12) 

and we use this expression to evaluate the potential energy V from (3.3): 

1 - 4A cos 2na 
da 

( 1 + A 2 + 2 A c o s 2 n ~ )  

dB 
- 4A eie 

= & ReIo2r ( 1 + A eU) ( 1 + A e-ie) 

where the positive root of [l + (dy/db)2]4 is taken, since this corresponds to the phy- 
sical situation for most values of A.  However when A = Acrit (Acrlt being the smallest 
real root of A4 - 6A2 + l), we have an infinite slope in the wave profile at a = 4. For 
A,,,, < A < A,,, the slope is infinite at  two values of a (see figure 4). In  fact 
A,,,t = 0.414214, corresponding to a steepness of 0.636620. We shall return to con- 
sider this situation towards the end of this section. 

To evaluate V ,  we note that only the simple pole at  z = -A is relevant and easily 
obtain 

(3.13) 

or 'v = 2[( 1 + n2a2/4h2)4 - 11 7 .  (3.14) 
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Thus V is a strictly increasing function of the steepness alh,  and for small values of 
alh becomes 

v = R 2 7  ah2 + 0 6). 
This is exactly as predicted by linear theory (cf. Lamb 1932, $266). 

TO evaluate the kinetic energy we must use (2.10) and (2.11), from which 

since the mean level is zero. Now along 'P = 0, with z = D + iy, we have 

We can readily show, using (3. 

So we have 

) and (3.7), that 

1 + A 2 + 2 A c o s 2 ~ a  - - 
A( 1 + A2- 2A cos 2na)- 

da 
c2Ah 1 ( A  + cos 2na) 
7 I,, ( 1  + A2+ 2A cos 2na) 

and the integral is easily seen to vanish once it is written in complex form. Hence 
T = $c2a0 and, from (2.6), I = ca,. 

The square of the phase speed of pure capillary waves is given by 

27f7(1-A2) 
c2 = -~ 

[Crapper 1957, equation (SO)]. Hence, using (3.11), 

h (1+A2) 

or 

(3.15) 

(3.16) 

So T is a strictly increasing function of a / h  and for small values of this parameter 

which again accords with linear theory. 
We see, using (3.13) and (3.15), that 

V = T(1 +A2) .  

So V > T in general, with V + T only for very small steepnesses. From (3.14) and 
(3.16) we get, finally, 



S'teep water waves and surface tension 177 

a/2n 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.729765 

T 

0.024375 
0.094159 
0.200879 
0.334277 
0.485115 
0.646414 
0.813458 
0.8638 1 ti 

V 

0.024524 
0.096374 
0.210942 
0.362020 
0.543109 
0.748283 
0.972559 
1.042388 

S x x  

0.072977 
0.280261 
0.592575 
0.975088 
1.397352 
1.837374 
2.281275 
2.412875 

F 

0.072681 
0.275907 
0.573169 
0.922785 
1.290621 
1.654308 
2.001734 
2.101116 

TABLE 1.  Valucs of T', IT, S,, and F for pure capillary waves for 
particular values of the steepncss a/2n (7  = 1 ,  h = 27r). 

_. . 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7298 

al2n 
FIGURE 2. Impulse I ,  total energy E ,  potential energy V and kinetic energy T 

as functions of a/2n for pure capillary waves. 
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0 0.1 0.2 0.4 0.5 0.6 0.7 0.7298 
a/2n 

FIGURE 3. Radiation stress Sxx and total energy flux P as functions of a/% 
for pure capillary waves. 

again in agreement with linear theory. Equations (3.13) and (3.15) can also be ob- 
tained from Lighthill's (1965) analysis. 

Evaluation of radiation stresses and energy jiux 

We now evaluate the radiation stresses and energy flux for deepwater pure capillary 
waves. Since g = 0, we write (2.23) and (2.24) as 

Sxx = 4T - V ,  F = 3d' .  (3.17), (3.18) 

Using (3.13) and (3.15), these become 

(3.19), (3.20) 
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a/2a 
-0.6063 
-0.41 97 

'0.2653 
- 0.7298 

-0. I 286 

- 5 4  1 I L 1 I 

0' n! 2ir 

FIGURE 4. Pure capillary wave profiles, all with the same mean level. 

For small values of A (and hence a/A) ,  S,, = 3 T  + QE, and F = Ec, (where 
c, ( =  Qc) is the group velocity of deep-water capillary waves) in agreement with 
linear theory. For pure gravity waves, (2.23) and (2.24) become S,, = 4 T  - 3 V  and 
F = ( 3 T  - 2 V )  c, as derived by Longuet-Higgins (1975). 

Throughout this section we have always taken the positive root of ( 1  +f2 ) i ,  as 
given in (3.12), since for most values of the wave steepness this corresponds to a 
wave slope of less than 90" (see figure 4) .  However the results already obtained for 
V, T ,  S,, and F are analytic for all A < Amax, so by analytic continuation they are 
valid in the interval Acrit ,< A < A,,, despite the fact that the surface bends over 
itself here. 

4. Numerical results 
In table 1 we give values for the four quantities V, T, S,, and F [as given by (3.14),  

(3.16), (3.17) and (3.18) respectively] for particular values of the wave steepness. 
In figure 2 we show I ,  E ,  V and T us. a/A,  where, for convenience, we have written 

7 = 1 and A = 27r. In figure 3 we show S,, and F us. a /A  in a similar manner. 
In figure 4 we have drawn particular wave profiles, all with the same mean level. 

It is clear that the crest height increases and then decreases whereas the trough depth 
always increases with wave height [this can be shown rigorously, using (3.7) and 
(3.11)]. This figure is to scale. 
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